at what point does the tangent line to c at (4 1 4) intersect the xy plane

6.four Equation of a tangent to a curve (EMCH8)

temp text

At a given point on a curve, the gradient of the bend is equal to the gradient of the tangent to the curve.

7fc48b5455f636efe7e121fa8485c889.png

The derivative (or slope function) describes the gradient of a curve at whatever betoken on the curve. Similarly, it too describes the gradient of a tangent to a curve at any point on the curve.

To make up one's mind the equation of a tangent to a curve:

  1. Find the derivative using the rules of differentiation.
  2. Substitute the \(x\)-coordinate of the given point into the derivative to calculate the slope of the tangent.
  3. Substitute the gradient of the tangent and the coordinates of the given point into an appropriate form of the straight line equation.
  4. Make \(y\) the subject of the formula.

The normal to a bend is the line perpendicular to the tangent to the bend at a given point.

\[m_{\text{tangent}} \times m_{\text{normal}} = -1\]

Worked example thirteen: Finding the equation of a tangent to a bend

Find the equation of the tangent to the curve \(y=iii{x}^{2}\) at the point \(\left(one;3\right)\). Sketch the curve and the tangent.

Find the derivative

Utilize the rules of differentiation:

\begin{marshal*} y &= three{10}^{2} \\ & \\ \therefore \frac{dy}{dx} &= iii \left( 2x \right) \\ &= 6x \stop{marshal*}

Summate the gradient of the tangent

To determine the gradient of the tangent at the point \(\left(1;iii\right)\), we substitute the \(10\)-value into the equation for the derivative.

\brainstorm{align*} \frac{dy}{dx} &= 6x \\ \therefore m &= 6(1) \\ &= 6 \end{align*}

Determine the equation of the tangent

Substitute the slope of the tangent and the coordinates of the given bespeak into the slope-point form of the straight line equation.

\begin{align*} y-{y}_{1} & = m\left(x-{x}_{i}\right) \\ y-3 & = 6\left(x-i\right) \\ y & = 6x-6+three \\ y & = 6x-3 \end{marshal*}

Sketch the bend and the tangent

a624b41da05a79e22fc3a20f66bc1515.png

Worked case fourteen: Finding the equation of a tangent to a curve

Given \(1000(ten)= (x + 2)(2x + 1)^{two}\), determine the equation of the tangent to the curve at \(x = -1\) .

Decide the \(y\)-coordinate of the point

\begin{align*} g(x) &= (ten + 2)(2x + i)^{2} \\ chiliad(-1) &= (-one + ii)[ii(-one) + 1]^{2} \\ &= (1)(-one)^{2} \\ & = 1 \end{marshal*}

Therefore the tangent to the curve passes through the point \((-1;1)\).

Expand and simplify the given part

\begin{align*} one thousand(x) &= (x + ii)(2x + one)^{ii} \\ &= (10 + two)(4x^{2} + 4x + 1) \\ &= 4x^{3} + 4x^{ii} + x + 8x^{2} + 8x + 2 \\ &= 4x^{3} + 12x^{2} + 9x + 2 \cease{marshal*}

Detect the derivative

\brainstorm{align*} m'(10) &= 4(3x^{2}) + 12(2x) + ix + 0 \\ &= 12x^{2} + 24x + 9 \end{align*}

Summate the gradient of the tangent

Substitute \(x = -\text{1}\) into the equation for \(k'(10)\):

\brainstorm{align*} g'(-ane) &= 12(-1)^{2} + 24(-1) + 9 \\ \therefore 1000 &= 12 - 24 + 9 \\ &= -iii \end{align*}

Determine the equation of the tangent

Substitute the gradient of the tangent and the coordinates of the signal into the gradient-signal grade of the straight line equation.

\brainstorm{align*} y-{y}_{i} & = m\left(10-{10}_{1}\correct) \\ y-1 & = -3\left(x-(-one)\right) \\ y & = -3x - 3 + one \\ y & = -3x - 2 \terminate{align*}

Worked example 15: Finding the equation of a normal to a curve

  1. Decide the equation of the normal to the curve \(xy = -4\) at \(\left(-1;iv\correct)\).
  2. Draw a crude sketch.

Observe the derivative

Make \(y\) the subject of the formula and differentiate with respect to \(10\):

\begin{align*} y &= -\frac{four}{x} \\ &= -4x^{-i} \\ & \\ \therefore \frac{dy}{dx} &= -iv \left( -1x^{-two} \right) \\ &= 4x^{-two} \\ &= \frac{iv}{x^{2}} \end{align*}

Calculate the gradient of the normal at \(\left(-1;4\correct)\)

Start determine the gradient of the tangent at the given point:

\begin{marshal*} \frac{dy}{dx} &= \frac{4}{(-1)^{2}} \\ \therefore thou &= iv \end{align*}

Use the gradient of the tangent to summate the gradient of the normal:

\begin{align*} m_{\text{tangent}} \times m_{\text{normal}} &= -1 \\ 4 \times m_{\text{normal}} &= -1 \\ \therefore m_{\text{normal}} &= -\frac{1}{four} \end{align*}

Discover the equation of the normal

Substitute the gradient of the normal and the coordinates of the given point into the gradient-point form of the straight line equation.

\begin{align*} y-{y}_{one} & = m\left(x-{x}_{1}\right) \\ y-4 & = -\frac{1}{4}\left(ten-(-1)\right) \\ y & = -\frac{1}{iv}x - \frac{1}{4} + iv\\ y & = -\frac{ane}{4}x + \frac{15}{4} \cease{align*}

Draw a crude sketch

20069b2e667f1dad6e7882fd2f900284.png

Equation of a tangent to a bend

Textbook Exercise vi.5

Determine the equation of the tangent to the bend defined by \(F(x)=x^{3}+2x^{two}-7x+ane\) at \(ten=2\).

\begin{align*} \text{Gradient of tangent }&= F'(x) \\ F'(x) &=3x^{2} +4x - 7 \\ F'(two) &=3(2)^{2} + (iv)(2) -7 \\ &=13 \\ \therefore \text{Tangent: } y &=13x +c \end{align*}

where \(c\) is the \(y\)-intercept.

Tangent meets \(F(x)\) at \((2;F(two))\)

\brainstorm{align*} F(2) &=(2)^{3} + 2(2)^{two} - 7(two) +i \\ &= 8 + viii -14 +1 \\ &=three \\ \text{Tangent: } three &=13(2) + c \\ \therefore c &= - 23 \\ y & = 13x - 23 \end{align*}

\(f(x)=i-3x^{ii}\) is equal to \(\text{5}\).

\begin{marshal*} \text{Gradient of tangent } = f'(x) = -6x \\ \therefore -6x &= five \\ \therefore 10 &= - \frac{5}{6} \\ \text{And } f\left(- \frac{5}{six} \right) &=1-3 \left( - \frac{5}{6} \right)^{2} \\ &=one-3 \left( \frac{25}{36} \correct) \\ &=i - \frac{25}{12} \\ &= - \frac{thirteen}{12} \\ \therefore & \left( - \frac{five}{6};- \frac{13}{12} \right) \cease{align*}

\(thou(10)=\frac{i}{iii}ten^{2}+2x+1\) is equal to \(\text{0}\).

\begin{align*} \text{Gradient of tangent } = thou'(x) = \frac{2}{3}x+2 \\ \therefore \frac{2}{3}x+2 &=0 \\ \frac{2}{3}x &= -2\\ \therefore x&=-ii \times \frac{3}{two} \\ &=-three \\ \text{And } chiliad(-3) &= \frac{1}{iii}(-3)^{2}+two(-3)+1 \\ &= \frac{1}{3}(nine)-6+1 \\ &= 3-6+i \\ &= -2 \\ \therefore & (-3;-2) \terminate{align*}

parallel to the line \(y=4x-2\).

\begin{align*} \text{Slope of tangent }&= f'(ten) \\ f(x)&=(2x-ane)^{2} \\ &= 4x^{2}-4x+ane \\ \therefore f'(ten)&= 8x-4 \\ \text{Tangent is parallel to } y&=4x-two \\ \therefore thou&=4 \\ \therefore f'(ten) = 8x-4 &= 4 \\ 8x &= 8 \\ x & = 1\\ \text{For } x=i: \quad y & = (ii(one)-one)^{2} \\ & = i \end{marshal*}

Therefore, the tangent is parallel to the given line at the point \((i;1)\).

perpendicular to the line \(2y+x-4=0\).

\begin{marshal*} \text{Perpendicular to } 2y + ten - four &= 0 \\ y&= -\frac{i}{two}x+2\\ \therefore \text{ slope of } \perp \text{ line } & = ii \quad (m_1 \times m_2 = -one) \\ \therefore f'(ten) &= 8x-iv \\ \therefore 8x-4 &=2\\ 8x&=half dozen\\ x&=\frac{3}{4} \\ \therefore y&=\left[two\left(\frac{3}{four}\right)-1\right]^{2} \\ &=\frac{1}{4} \\ \therefore \left(\frac{3}{4};\frac{1}{four}\right) \finish{align*}

Therefore, the tangent is perpendicular to the given line at the bespeak \(\left(\frac{three}{iv};\frac{1}{4}\right)\).

Describe a graph of \(f\), indicating all intercepts and turning points.

Complete the square:

\begin{align*} y&=-[x^{2}-4x+3] \\ &=-[(x-two)^{2}-4+3] \\ &=-(x-2)^{ii}+1\\ \text{Turning signal}:&(2;one) \end{marshal*} \(\text{Intercepts:}\\ y_{\text{int}}: ten = 0, y = -three \\ x_{\text{int}}: y=0, \\ -x^{2} +4x -3 = 0 \\ 10^{2} - 4x + 3 = 0 \\ (10-3)(x-1) = 0 \\ x=three \text{ or } ten=ane \\ \text{Shape: "pout" } (a < 0) \\\) 69fcf154dba0672f7723d3c6c3cf39b1.png

Find the equations of the tangents to \(f\) at:

  1. the \(y\)-intercept of \(f\).
  2. the turning point of \(f\).
  3. the betoken where \(x = \text{4,25}\).
  1. \begin{align*} y_{\text{int}}: (0;-three) \\ m_{\text{tangent}} = f'(10) &= -2x + 4 \\ f'(0) &=-2(0) + four \\ \therefore m &=four\\ \text{Tangent }y&=4x+c\\ \text{Through }(0;-3) \therefore y&=4x-3 \finish{align*}
  2. \begin{align*} \text{Turning point: } (2;1) \\ m_{\text{tangent}} = f'(2) &= -2(ii) + 4 \\ &=0\\ \text{Tangent equation } y &= ane \end{align*}
  3. \begin{align*} \text{If } 10 &=\text{4,25} \\ f(\text{four,25})&=-\text{four,25}^{2}+4(\text{iv,25})-3 \\ &= -\text{4,0625} \\ m_{\text{tangent}} \text{ at } ten&= \text{iv,25} \\ thousand&=-2(\text{iv,25})+four\\ &=-\text{4,v} \\ \text{Tangent }y&=-\text{4,5}10+c\\ \text{Through }(\text{4,25};-\text{4,0625}) \\ -\text{4,0625}&=-\text{four,five}(\text{iv,25})+c\\ \therefore c&= \text{15,0625} \\ y&=-\text{four,5}x+\text{15,0625} \end{marshal*}

Draw the three tangents in a higher place on your graph of \(f\).

5488a7c7dff4a2f10b3febac38fbcf25.png

Write downwardly all observations about the three tangents to \(f\).

Tangent at \(y_{\text{int}}\) (blue line): gradient is positive, the office is increasing at this point.

Tangent at turning bespeak (dark-green line): gradient is zero, tangent is a horizontal line, parallel to \(x\)-centrality.

Tangent at \(x=\text{four,25}\) (purple line): slope is negative, the function is decreasing at this point.

crumrineearelleth.blogspot.com

Source: https://intl.siyavula.com/read/maths/grade-12/differential-calculus/06-differential-calculus-04

0 Response to "at what point does the tangent line to c at (4 1 4) intersect the xy plane"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel